Topology of polynomial functions and monodromy dynamics
نویسنده
چکیده
Let f : C n ! C be a polynomial function. We deene global polar invariants associated to bres of f and we describe a CW-complex model of a bre. We show how to use aane polar curves in order to study the monodromy around atypical values of f, including the value innnity. We give a zeta-function formula for such a monodromy. Topologie des fonctions polynomiales et dynamique mono-dromique R esum e. Soit f : C n ! C une fonction polynomiale. On d eenit des invariants polaires globaux associ es aux bres de f a l'aide desquels on d ecrit un mod ele d'une bre de f comme CW-complexe. On montre comment utiliser les courbes polaires aanes pour etudier la monodromie autour d'une valeur atypique, y compris la valeur innni. On donne une formule pour la fonction z^ eta d'une telle monodromie. On etudie une fonction polynomiale f : C n ! C , n 2, ayant comme but de decrire la variation dans la topologie de la bre de f due a la pr esence des bres atypiques. Une valeur t 0 2 C est typique pour f si l'application f est une C 1-bration triviale en t 0. L'ensemble des valeurs atypiques est ni (cf. 8], 12]) et il inclut l'ensemble des valeurs critiques de f. Les valeurs atypiques non critiques sont dues au comportement asymptotique \mauvais" d'un nombre de bres. On d eenit d'abord des invariants polaires globaux (introduits en 11] pour le but de construire une th eorie d' equisingularit e globale des familles d'hypersurfaces aanes) et on montre comment entrent dans la description d'un modele CW-complexe d'une bre de f (Th eor eme 1.3). On considere ensuite le probl eme de d eenir une monodromie g eom etrique globale,
منابع مشابه
Singularities at in nity and their vanishing cycles II Monodromy
Let f C n C be any polynomial function By using global polar methods we introduce models for the bers of f and we study the monodromy at atypical values of f including the value in nity We construct a geometric monodromy with controlled behavior and de ne global relative monodromy with respect to a general linear form We prove localization results for the relative monodromy and derive a zeta fu...
متن کاملDeformations of Polynomials, Boundary Singularities and Monodromy
We study the topology of polynomial functions by deforming them generically. We explain how the non-conservation of the total “quantity” of singularity in the neighbourhood of infinity is related to the variation of topology in certain families of boundary singularities along the hyperplane at infinity. 2000 Math. Subj. Class. 32S30, 14D05, 32S40, 58K60, 14B07, 58K10, 55R55.
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملMonodromy zeta functions at infinity , Newton polyhedra and constructible sheaves ∗
By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober-Sperber [15] concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.
متن کاملMonodromy zeta functions at infinity , Newton polyhedra and
By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober-Sperber [17] concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.
متن کاملBlocks of monodromy groups in complex dynamics
Motivated by a problem in complex dynamics, we examine the block structure of the natural action of iterated monodromy groups on the tree of preimages of a generic point. We show that in many cases, including when the polynomial has prime power degree, there are no large blocks other than those arising naturally from the tree structure. However, using a method of construction based on real grap...
متن کامل